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Abstract: The present investigation is concerned with vi-
bration phenomenon of a homogeneous, isotropic ther-
moelasticmicrobeamwithdouble porosity (TDP) structure
induced by pulsed laser heating, in the context of Lord–
Shulman theory of thermoelasticity with one relaxation
time. Laplace transform technique has been applied to ob-
tain the expressions for lateral deflection, axial stress, ax-
ial displacement, volume fraction field, and temperature
distribution. The resulting quantities are recovered in the
physical domain by a numerical inversion technique. Vari-
ations of axial displacement, axial stress, lateral deflec-
tion, volume fraction field, and temperature distribution
with axial distance are depicted graphically to show the
effect of porosity and laser intensity parameter. Some par-
ticular cases are also deduced.

Keywords: double porosity, thermoelasticity, Lord–
Shulman theory, laser pulse, microbeam

1 Introduction
The demand for engineering structures is continuously
increasing. Aerospace vehicles, bridges, and automobiles
are examples of these structures. Many aspects have to be
taken into consideration in the design of these structures
to improve their performance and extend their life. Micro-
and nano-mechanical resonators have attracted consider-
able attention because of their many important techno-
logical applications. In the recent years, the laser pulse
technology has been widely used in the material process-
ing andnondestructive testing. Ultra-short lasers are those
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with pulse duration ranging from nanoseconds to fem-
toseconds in general. The irradiation of the surface of a
solid by pulsed laser light generates wave motion in the
solid material. During pulsed laser heating, thermoelastic
waves are generated because of thermal expansion in the
region near the surface that propagates into the target (mi-
crobeam).

Biot [1] proposed a model for porous media with sin-
gle porosity. Later on, Barenblatt et al. [2] introduced a
model for porous media with double porosity structure.
Aifantis [3–5] used themixture theory and studied theme-
chanics of diffusion in solids. Wilson and Aifantis [6] pre-
sented the theory of consolidation with the double poros-
ity. Khalili [7] investigated the significance of the micro-
scopic coupling effects on the response of double porosity
media. Svanadze [8] studied the plane waves and bound-
ary value problems in the theory of elasticity for solids
with double porosity. Scarpetta and Svanadze [9] proved
the uniqueness theorems in the quasi-static theory of ther-
moelasticity for solids with double porosity.

Cowin and Nunziato [10] developed a theory of linear
elastic materials with voids for the mathematical study of
the mechanical behavior of porous solids. In this theory,
the skeletal materials are elastic and interstices are void of
material; hence, an additional degree of freedom, the vol-
ume fraction of void, is added. Iesan and Quintanilla [11]
derived a theory of thermoelastic solidswith double poros-
ity structure by using the theory developed by Cowin and
Nunziato [10]. Darcy’s law is not used in developing this
theory. So far not much work has been done on the the-
ory of thermoelasticity with double porosity based on the
model proposedby Iesan andQuintanilla [11]. Recently, in-
vestigations on the theory of thermoelasticity with double
porosity [11], which has a significant application in con-
tinuummechanics, have been started. Kumar et al. [12] ap-
plied the state space approach to a boundary value prob-
lem for thermoelastic material with double porosity.

The thermoelastic waves induced by the laser pulse
heating are investigated by various authors. Manolis and
Beskos [13] examined the thermally induced vibration
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of structures consisting of beams exposed to rapid sur-
face heating. Al-Huniti et al. [14] investigated the ther-
mally induced displacements and stresses of a rod us-
ing the Laplace transformation technique. A problem of
transverse vibrations of a beam induced by a mobile heat
source is investigated by Kidawa [15]. Fang et al. [16] an-
alyzed the frequency spectrum of laser-induced vibration
of microbeams. Soh et al. [17] studied the vibration of
micro/nanoscale beam resonators induced by ultra-short-
pulsed laser by considering the thermoelastic coupling
term. Sun et al. [18] investigated the vibration behavior of
microbeam during pulsed laser heating. Othman et al. [19]
studied the effect of initial stress on thermoelastic rotat-
ingmediumwith voids because of laser pulse heatingwith
energy dissipation. Kumar [20] studied the response of
thermoelastic beambecause of thermal source inmodified
couple stress theory. Kaghazian et al. [21] investigated the
free vibration analysis of a piezoelectric nanobeam using
nonlocal elasticity theory. Zenkour [22] studied the ther-
moelastic response of a microbeam embedded in visco-
Pasternak’s medium based on GN-III model.

In the present article, response of a thermoelastic mi-
crobeam with double porosity (TDP) structure induced by
laser pulse heating in the context of the Lord–Shulman
theory of thermoelasticity is studied. Laplace transform
has been applied to find the expressions for lateral de-
flection, axial stress, axial displacement, volume fraction
field, and temperature distribution. The resulting quanti-
ties are obtained in the physical domain by using a nu-
merical inversion technique. Variations of axial displace-
ment, axial stress, lateral deflection, volume fraction field,
and temperature distribution with axial distance are de-
picted graphically to show the effect of porosity and laser
intensity parameter. Some special cases have also beende-
duced.

2 Basic equations
Following Iesan and Quintanilla [11] and Lord and Shul-
man [23], the field equations and constitutive relation for
homogeneous, isotropic thermoelastic material with dou-
ble porosity structure in the absence of body forces and ex-
trinsic equilibrated body forces can be written as follows:

Equations of motion:

µ∇2ui + (λ + µ) uj,ji + bφ,i + dψ,i − βT,i = ρüi , (1)

Equilibrated stress equations of motion:

α∇2φ + b1∇2ψ − bur,r − α1φ − α3ψ + 𝛾1T = κ1φ̈, (2)

b1∇2φ + 𝛾∇2ψ − dur,r − α3φ − α2ψ + 𝛾2T = κ2ψ̈, (3)

Equation of heat conduction:

(︂
1 + τ0

∂
∂t

)︂(︁
βT0u̇j,j + 𝛾1T0φ̇ + 𝛾2T0ψ̇ + ρC*Ṫ − Q

)︁
(4)

= K*∇2T,

Constitutive relation:

tij = λerrδij + 2µeij + bφδij + dψδij − βTδij , (5)

where λ and µ are Lame’s constants; ρ; is the mass den-
sity; β = (3λ + 2µ) αt; αt is the linear thermal expansion;
C* is the specific heat at constant strain; ui is the displace-
ment components; tij is the stress tensor; κ1 and κ2 are
coefficients of equilibrated inertia; φ is the volume frac-
tion field corresponding to pores; ψ is the volume fraction
field corresponding to fissures; K* is the coefficient of ther-
mal conductivity; τ0 is the thermal relaxation time;Q is the
heat source; κ1 and κ2 are coefficients of equilibrated in-
ertia; b, d, b1, 𝛾, 𝛾1, 𝛾2 are constitutive coefficients; δij is
Kronecker’s delta; T is the temperature change measured
from the absolute temperature T0 (T0 ≠ 0); and a super-
posed dot represents differentiation with respect to time
variable t.

3 Formulation of the problem
Consider a homogeneous, isotropic, TDP structure hav-
ing the dimensions length = L (0 ≤ x ≤ L), width =
a
(︀
− a2 ≤ y ≤

a
2
)︀
, and thickness = h

(︁
− h2 ≤ z ≤

h
2

)︁
in a Carte-

sian coordinate system Oxyz as shown in Figure 1.
The microbeam undergoes bending vibrations of

small amplitude about the x-axis such that the deflection
is consistentwith the linear Euler–Bernoulli theory. There-
fore, the displacements can be written as

u1 = u = −z
∂w
∂x , u2 = 0, u3 = w(x, t), (6)

wherew is the lateral deflection and u is the axial displace-
ment.



78 | R. Kumar and R. Vohra

Figure 1: Geometry of the beam

The equation of motion for free flexural vibrations of
the beam is given by

∂2M
∂x2 + ρA

(︂
∂2w
∂t2

)︂
= 0, (7)

where A = ah is the cross-sectional area and M is the flex-
ural moment of cross section of microbeam. The flexural
moment of the cross section of the beam is given by

M(x, t) = −a
h/2∫︁

−h/2

txzdz = (λ + 2µ)I ∂
2w
∂x2 −Mφ −Mψ (8)

+MT ,

where I = ah3/12 is the moment of inertia of the cross
section; Mφ ,Mψ are the volume fraction field moments,
and MT is the thermal moment of the beam and are given
by

Mφ = b
h/2∫︁

−h/2

aφzdz, Mψ = d
h/2∫︁

−h/2

aψzdz, (9)

MT = β
h/2∫︁

−h/2

aTzdz.

Substituting Eq. (8) in Eq. (7), we get the following equa-
tion of motion of the microbeam:

(λ + 2µ)I ∂
4w
∂x4 + ρA

(︂
∂2w
∂t2

)︂
− ∂

2Mφ
∂x2 −

∂2Mψ
∂x2 (10)

+ ∂
2MT
∂x2 = 0.

Equations (2)–(4) with the aid of Eq. (6) can be written as
follows:

α
(︂
∂2φ
∂x2 + ∂

2φ
∂z2

)︂
+ b1

(︂
∂2ψ
∂x2 + ∂

2ψ
∂z2

)︂
+ bz ∂

2w
∂x2 (11)

− α1φ − α3ψ + 𝛾1T = κ1
∂2φ
∂t2

b1
(︂
∂2φ
∂x2 + ∂

2φ
∂z2

)︂
+ 𝛾

(︂
∂2ψ
∂x2 + ∂

2ψ
∂z2

)︂
+ dz ∂

2w
∂x2 (12)

− α3φ − α2ψ + 𝛾2T = κ2
∂2ψ
∂t2

K*
(︂
∂2T
∂x2 + ∂

2T
∂z2

)︂
=
(︂
1 + τ0

∂
∂t

)︂
(13)[︂

−βT0z
∂
∂t

(︂
∂2w
∂x2

)︂
+ 𝛾1T0φ̇ + 𝛾2T0ψ̇ + ρC*Ṫ − Q

]︂
.

The initial temperature distribution T (x, z, 0) = T0. For
t = 0, the upper surface, z = h/2, of the beam is heated
uniformly by a laser pulse with non-Gaussian form tem-
poral profile, which can be written as

I(t) = I0
t2p
te−

t
tp ,

where tp is a characteristics time of the laser pulse and I0
is the laser intensity, which is defined as the total energy
carried by a laser pulse per unit cross section of the laser
beam. In accordance with Sun et al. [18], the thermal con-
duction in the beam can bemodeled as a one-dimensional
problem with an energy source Q(z, t), that is,

Q(z, t) = Raδ0
e
(︁
z−h/2
δ0

)︁
I(t) = I0Ra t

δ0t2p
e
(︁
z−h/2
δ0
− t
tp

)︁
, (14)

where δ0 is the absorptive depth of heating energy and Ra
is the absorptivity of the irradiated surface.

4 Solution of the problem
For the present microbeam, we assume that there is no
flow of heat and volume fraction fields across the surfaces
(z = ±h/2) so that ∂T/∂z = ∂φ/∂z = ∂ψ/∂z = 0 at z =
±h/2. For a very thin beam, assume that volume fraction
fields and temperature increment in terms of sin

(︀
πz/h

)︀
function along the thickness direction. Therefore,

φ(x, z, t) = Φ(x, t) sin
(︀
πz/h

)︀
, (15)

ψ(x, z, t) = Ψ(x, t) sin
(︀
πz/h

)︀
,

T(x, z, t) = Θ(x, t) sin
(︀
πz/h

)︀
.

Substituting Eq. (15) in Eq. (10) yields

(λ + 2µ)I ∂
4w
∂x4 + ρah

(︂
∂2w
∂t2

)︂
− 2abh2

π2
∂2Φ
∂x2 (16)

− 2adh2
π2

∂2Ψ
∂x2 + 2aβh2

π2
∂2Θ
∂x2 = 0.

Multiplying Eqs. (11)–(13) by z and integrating them with
respect to z from −h/2 to h/2, we get

α
(︂
∂2Φ
∂x2 −

π2Φ
h2

)︂
+ b1

(︂
∂2Ψ
∂x2 −

π2Ψ
h2

)︂
+ bπ

2h
24

∂2w
∂x2 (17)

− α1Φ − α3Ψ + 𝛾1Θ = κ1
∂2Φ
∂t2
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b1
(︂
∂2Φ
∂x2 −

π2Φ
h2

)︂
+ 𝛾

(︂
∂2Ψ
∂x2 −

π2Ψ
h2

)︂
+ dπ

2h
24

∂2w
∂x2 (18)

− α3Φ − α2Ψ + 𝛾2Θ = κ2
∂2Ψ
∂t2

K*
(︂
∂2Θ
∂x2 −

π2Θ
h2

)︂
=
(︂
1 + τ0

∂
∂t

)︂
(19)[︂

−βT0π
2h

24
∂
∂t

(︂
∂2w
∂x2

)︂
+ 𝛾1T0

∂Φ
∂t

+𝛾2T0
∂Ψ
∂t + ρC* ∂Θ∂t − Q0te−t/tp

]︂
,

where

Q0 =
Ra I0h
2t2p

[︂(︂
1 + 2δ0

h

)︂
e−h/δ0 +

(︂
1 − 2δ0

h

)︂]︂
.

Introducing nondimensional variables as

x
′
= 1
L x, u

′
= 1
L u, w

′
= 1
Lw, t

′

x =
tx
E , (20)

Φ
′
= LαΦ, Θ

′
= β
EΘ, t′ = c1L t,

τ
′

0 =
c1
L τ0, Ψ

′
= LαΨ ,

where c21 =
λ+2µ
ρ and E = µ(3λ+2µ)

λ+µ is Young’s modulus.
Substituting Eqs. (20) in Eqs. (16)–(19), we obtain

(suppressing primes for convenience)

∂4w
∂x4 + a1

(︂
∂2w
∂t2

)︂
− a2

∂2Φ
∂x2 − a3

∂2Ψ
∂x2 + a4

∂2Θ
∂x2 = 0 (21)

a5
∂2Φ
∂x2 − a6Φ + a7

∂2Ψ
∂x2 − a8Ψ + a9

∂2w
∂x2 − a10Φ (22)

− a11Ψ + a12Θ −
∂2Φ
∂t2 = 0

a13
∂2Φ
∂x2 − a14Φ + a15

∂2Ψ
∂x2 − a16Ψ + a17

∂2w
∂x2 (23)

− a18Φ − a19Ψ + a20Θ −
∂2Ψ
∂t2 = 0

∂2Θ
∂x2 − a21Θ =

(︂
1 + τ0

∂
∂t

)︂
(24)[︂

a22
∂
∂t

(︂
∂2w
∂x2

)︂
+ a23

∂Φ
∂t + a24

∂Ψ
∂t + a25

∂Θ
∂t − Q1te−t/tp

]︂
,

where

a1 =
ρahc21L2
I(λ + 2µ) , a2 =

2abαh2
Iπ2(λ + 2µ) , a3 =

2adαh2
Iπ2(λ + 2µ) ,

a4 =
2ah2EL
Iπ2(λ + 2µ) , a5 =

α
k1c21

, a6 =
απ2L2

k1c21h2
,

a7 =
b1
k1c12

, a8 =
b1π2L2

k1c21h2
, a9 =

bhπ2L2

24αk1c21
,

a10 =
α1L2

k1c21
, a11 =

α3L2

k1c21
, a12 =

𝛾1EL3

αβk1c21
,

a13 =
b1
k2c12

, a14 =
b1π2L2

k2c21h2
, a15 =

𝛾

k2c12
,

a16 =
𝛾π2L2

k2c21h2
, a17 =

dhπ2L2

24αk2c21
, a18 =

α3L2

k2c21
,

a19 =
α2L2

k2c21
, a20 =

𝛾2EL3

αβk2c21
, a21 =

π2L2
h2 ,

a22 = −
T0hc1π2β2
24EK* , a23 =

αβT0𝛾1c1
EK* ,

a24 =
αβT0𝛾2c1
EK* , a25 =

ρC*c1L
K* , Q1 =

Q0βL3
K*Ec1

e−L/c1 .

5 Initial and boundary conditions
The initial conditions of the problemare assumed to be ho-
mogeneous and are written as

w(x, t)
⃒⃒
t=0 =

∂w(x, t)
∂t

⃒⃒⃒⃒
t=0

= 0 (25)

Φ(x, t)
⃒⃒
t=0 =

∂Φ(x, t)
∂t

⃒⃒⃒⃒
t=0

= 0

Ψ(x, t)
⃒⃒
t=0 =

∂Ψ(x, t)
∂t

⃒⃒⃒⃒
t=0

= 0

Θ(x, t)
⃒⃒
t=0 =

∂Θ(x, t)
∂t

⃒⃒⃒⃒
t=0

= 0.

These initial conditions are supplemented by considering
that the two ends of the microbeam are clamped and held
at a constant temperature with no change in the volume
fraction fields. Mathematically, it can be written as

w(x, t)
⃒⃒
x=0.L =

∂w(x, t)
∂x

⃒⃒⃒⃒
x=0,L

= 0, (26)

Φ(x, t)
⃒⃒
x=0,L = 0, Ψ(x, t)

⃒⃒
x=0,L = 0, Θ(x, t)

⃒⃒
x=0,L = Θ0.

6 Solution in the Laplace transform
domain

Applying the Laplace transform defined by

f (s) = L[f (t)] =
∞
∫
0
f (t) e−stdt (27)

in Eqs. (21)–(24) under the initial conditions (25) and after
some simplifications, we obtain(︁

D10 + B1D8 + B2D6 + B3D4 + B4D2 + B5
)︁
(w, (28)

Φ, Ψ , Θ
)︀
= (0, G1, G2, G3) .
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Here Dm= dm
dxm ; the expressions for B1, B2, B3, B4, B5, G1,

G2, G3 are given in Appendix 1.
The solution of Eq. (28) in the Laplace transform do-

main can be written as

w =
5∑︁
i=1

(︁
Die−λix + Di+5eλix

)︁
(29)

Φ = H1 +
5∑︁
i=1

g1i
(︁
Die−λix + Di+5eλix

)︁
(30)

Ψ = H2 +
5∑︁
i=1

g2i
(︁
Die−λix + Di+5eλix

)︁
(31)

Θ = H3 +
5∑︁
i=1

g3i
(︁
Die−λix + Di+5eλix

)︁
. (32)

The expressions for g1i, g2i, g3i (i = 1, 2, 3, 4, 5); H1, H2,
H3 are given in Appendix 2.

Here ±λi, i = 1, 2, 3, 4, 5, are the roots of the charac-
teristic equation

λ10 + B1λ8 + B2λ6 + B3λ4 + B4λ2 + B5 = 0. (33)

Therefore, the axial displacement in the Laplace transform
using Eq. (29) can be written as

u = −z dwdx = −z
5∑︁
i=1

(︁
−λiDie−λix + λiDi+5eλix

)︁
. (34)

The boundary conditions (26) in the Laplace transformdo-
main take the following form:

w(x, s)
⃒⃒
x=0.L =

dw(x, s)
∂x

⃒⃒⃒⃒
x=0,L

= 0, (35)

Φ(x, s)
⃒⃒
x=0,L = 0, Ψ(x, s)

⃒⃒
x=0,L = 0,

Θ(x, s)
⃒⃒
x=0,L =

Θ0
s = F(s).

In order to determine the unknown parameters, substitut-
ing (29)–(32) in the boundary conditions (35), we obtain a
system of 10 linear equations in the followingmatrix form:

[A] [D] = [Y] , (36)

where

[A] =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
e−λ1L e−λ2L e−λ3L e−λ4L e−λ5L

−λ1 −λ2 −λ3 −λ4 −λ5
−λ1e−λ1L −λ2e−λ2L −λ3e−λ3L −λ4e−λ4L −λ5e−λ5L

g11 g12 g13 g14 g15
g11e−λ1L g12e−λ2L g13e−λ3L g14e−λ4L g15e−λ5L

g21 g22 g23 g24 g25
g21e−λ1L g22e−λ2L g23e−λ3L g24e−λ4L g25e−λ5L

g31 g32 g33 g34 g35
g31e−λ1L g32e−λ2L g33e−λ3L g34e−λ4L g35e−λ5L

· · · 1 1 1 1 1
· · · eλ1L eλ2L eλ3L eλ4L eλ5L

· · · λ1 λ2 λ3 λ4 λ5
· · · λ1eλ1L λ2eλ2L λ3eλ3L λ4eλ4L λ5eλ5L

· · · g11 g12 g13 g14 g15
· · · g11eλ1L g12eλ2L g13eλ3L g14eλ4L g15eλ5L

· · · g21 g22 g23 g24 g25
· · · g21eλ1L g22eλ2L g23eλ3L g24eλ4L g25eλ5L

· · · g31 g32 g33 g34 g35
· · · g31eλ1L g32eλ2L g33eλ3L g34eλ4L g35eλ5L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[D] =[︁
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

]︁tr
,

[Y] =[︁
0 0 0 0 −H1 −H1 −H2 −H2 H4 H4

]︁tr
,

H4 = F(s) − H3,

tr is the transpose of the matrix.
By solving Eq. (36), we obtain the values of unknown

parameters, Di , i = 1, 2, . . . , 10.
This completes the solution of the problem in the

Laplace transform domain.

7 Particular cases
Case 1. If τ0 = 0 in Eq. (36), it yields the corresponding
expressions for a TDP structure in the context of coupled
theory (CT) of thermoelasticity.

Case 2. If b1 = α3 = 𝛾 = α2 = 𝛾2 = d → 0 in Eq. (36), we
obtain the corresponding expressions for a thermoelastic
microbeam with single porosity (TSP).

8 Inversion of the Laplace domain
To determine the lateral deflection, axial stress, axial dis-
placement, volume fraction field, and temperature distri-
bution in the physical domain, we adopt a numerical in-
version method given by Honig and Hirdes [24].

In this method, the Laplace domain f (s) can be in-
verted to time domain f (t) as follows:

f (t) = e
Ωt

t1

[︃
1
2 f (Ω) + Re

N∑︁
k=1

f
(︂
Ω + ιkπt1

)︂
exp

(︂
ιkπt
t1

)︂]︃
,

0 < t1 < 2t,
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where Re is the real part and ι is the imaginary number
unit. The value of N is chosen sufficiently large, and it rep-
resents the number of terms in the truncated Fourier series
such that

f (t) = exp(Ωt)Re
[︂
f
(︂
Ω + ιNπt1

)︂
exp

(︂
ιNπt
t1

)︂]︂
≤ ε1,

where ε1 is a prescribed small positive number. Also, the
value of Ω should satisfy the relation Ωt ≃ 4.7 for the
faster convergence [25].

9 Numerical results and discussion
Numerical computations have been performed for copper-
like material microbeam. The material parameters are
taken as in Kumar et al. [12] λ = 7.76 × 1010 N m−2,
C* = 3.831 × 103 m2 s−2 K−1, µ = 3.86 × 1010 N m−2, K* =
3.86 × 103 N s−1 K−1, T0 = 298 K, ρ = 8.954 × 103 kg m−3,
αt = 1.78×10−5 K−1, α2 = 2.4×1010 Nm−2, α3 = 2.5×1010

Nm−2, 𝛾 = 1.1×10−5 N, α = 1.3×10−5 N, 𝛾2 = 0.219×105

Nm−2, κ1 = 0.1456×10−12 Nm−2 s2, b = 0.9×1010 Nm−2

α1 = 2.3 × 1010 N m−2, κ2 = 0.1546 × 10−12 N m−2 s2,
τ0 = 0.01 s.

The aspect ratio of the beam is fixed as L/h = 10,
a/h = 0.5, and z = h/6. The laser pulse parameters are
tp = 2ps, I0 = 1×1011 J m2, and Ra = 0.5, which are simi-
lar to that in Sun et al. [18]. The softwareMATLABhas been
used to find the values of lateral deflection, axial stress,
axial displacement, volume fraction field, and tempera-
ture distribution. The variations of these quantities with
respect to axial distance have been given in Figures 2–11.
In Figures 2–6, the graphical representation of the effect of
porosity is given. In these figures, solid line corresponds
to TDP and small dashes line corresponds to TSP. Also,
the graphical representation of the effect of laser inten-
sity parameter is depicted in Figures 7–11. In Figures 7–
11, solid line, line with small dashes, and line with big
dashes correspond to the values of laser intensity param-
eters I0 = 1 × 1011, 2 × 1011, and 3 × 1011, respectively.

9.1 Effect of porosity

Figure 2 shows that for both TDP and TSP, the value of
axial displacement, u, initially decreases for the region
0 < x < 1 and increases afterwards in the remaining re-
gionwith the increase in the value of x. Although the trend
and behavior of variation of u is similar for both TDP and
TSP for all the values of x but the magnitude values are
more for TSP in comparison to TDP because of the effect

of porosity. From Figure 3, it is noticed that for TDP, the
values of lateral deflection w decreases for 0 < x < 1, in-
creases for 1 ≤ x < 2, and becomes almost stationary as
x ≥ 2, whereas in the case of TSP, it initially decreases for
0 < x < 1 and then increases slowly and steadily as x ≥ 1.
The effect of porosity decreases the magnitude values of
TSP compared to that of TDP. From Figure 4, it is clear that
for TDP, the value of volume fraction field φ initially de-
creases sharply for the region 0 < x < 1 and then start in-
creasing as x ≥ 1, whereas in the case of TSP, the value ofφ
initially increases for 0 < x < 1 and then decreases slowly
and steadily as x ≥ 1. An opposite trend and behavior of
variation is noticed for TDP and TSP. Also, the magnitude
values of φ remain more for TSP as compared to TDP for
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Figure 2: Variation of the axial displacement u with respect to the
axial distance x
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Figure 3: Variation of the lateral deflection w with respect to the
axial distance x
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Figure 4: Variation of the volume fraction field φ with respect to the
axial distance x

all the values of x. Figure 5 shows that the value of tem-
perature distribution, T, increasesmonotonically with the
increase in the value ofx. Although a similar trend of vari-
ation is noticed for both the materials but because of the
effect of porosity, the magnitude values for TDP are higher
in comparison to TSP. Figure 6 depicts that the value of ax-
ial stress, tx, initially decreases for the region0 < x < 3 and
increases afterwards in the remaining region in the case of
TDP,whereas for TSP, it initially increases for0 < x < 1 and
decreases as x ≥ 1. The trend and behavior of variation is
of opposite nature for TDP and TSP but themagnitude val-
ues are more for TSP in comparison to TDP because of the
effect of porosity.
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Figure 5: Variation of the temperature distribution T with respect to
the axial distance x
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Figure 6: Variation of the axial stress tx with respect to the axial
distance x

9.2 Effect of laser intensity parameter

From Figure 7, it is noticed that the value of axial displace-
ment, u, initially decreases for the region 0 < x < 1 and
increases afterwards in the remaining region for all the val-
ues of laser intensity, I0. It is found that the magnitude
value of u decreases with the increase in the value of I0.
Figure 8 shows that the values of lateral deflection, w, de-
creases for 0 < x < 1, increases for 1 < x < 3, and becomes
almost stationary as x ≥ 3 for all the values of I0. Also,
the magnitude value of w decreases with the increase in
the value of I0. Figure 9 depicts that the value of volume
fraction field, φ, initially decreases sharply for the region
0 < x < 1 and then starts increasing monotonically as
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Figure 7: Variation of the axial displacement u with respect to the
axial distance x
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Figure 8: Variation of the lateral deflection w with respect to the
axial distance x
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Figure 9: Variation of the volume fraction field φ with respect to the
axial distance x

x ≥ 1. The magnitude value of φ increases with the in-
crease in the value of I0. From Figure 10, it is clear that
the value of temperature distribution, T, increases mono-
tonically with the increase in the value of x. It is also found
that themagnitude values of T decreaseswith the increase
in the value of laser intensity, I0. From Figure 11, it is evi-
dent that the value of axial stress, tx, initially decreases for
0 < x < 3 and increases afterwards as x ≥ 3. It is noticed
that the magnitude value of tx not necessarily increases or
decreases with the variation in the value of laser intensity
I0.
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Figure 10: Variation of the temperature distribution T with respect
to the axial distance x
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Figure 11: Variation of the axial stress tx with respect to the axial
distance x

10 Conclusions
In this work, vibration phenomenon of a homogeneous,
isotropic TDP structure induced by pulsed laser heating
in the context of the Lord–Shulman theory of thermoelas-
ticity has been studied. The effects of porosity and laser
intensity parameter on axial displacement, lateral deflec-
tion, volume fraction field, temperature distribution, and
axial stress are graphically depicted. It is observed that the
porosity has a significant effect on all the physical quanti-
ties. It has both increasing as well as decreasing effect on
the resulting quantities. The magnitude values of lateral
deflection and temperature distribution are more for TDP
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in comparison to the values for TSP, whereas an opposite
trend is noticed in the case of axial displacement, volume
fraction field, and axial stress. Also, all the field quantities
are observed to be very sensitive toward the laser intensity
parameter, I0. It is found that the magnitude values of ax-
ial displacement, lateral deflection, and temperature dis-
tribution decrease with the increases in the value of laser
intensity parameter, whereas the trend gets reversed for
the volume fraction field. Also, the magnitude values of
axial stress not necessarily increase or decrease with the
variation in the value of laser intensity parameter, I0.

This type of study is useful because of its physical ap-
plication in geophysics, rock mechanics, mechanical en-
gineering, civil engineering,medical science, sensors, res-
onators, and so on.
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Appendix 1

a26 = s(1 + τ0s), a27 = −s(1 + τ0s)a22,
a28 = −s(1 + τ0s)a23, a29 = −s(1 + τ0s)a24,
a30 = −

{︀
a21 + s(1 + τ0s)a25

}︀
,

n1 = −
(︁
a6 + a10 + s2

)︁
, n2 = − (a8 + a11) ,

n3 = − (a18 + a14) , n4 = −
(︁
a16 + a19 + s2

)︁
,

r1 = a5a15 − a7a13,

r2 = a5(a15a30 + n4) − a13n2 + n1a15 − a7(a13a30 + n3),

r3 = n1(a15a30 + n4) + a5(n4a30 − a20a29)
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− a7(n3a30 − a20a28) − n2(a13a30 + n3)
+ a12(a13a29 − a15a28),

r4 = n1(n4a30 − a20a29) + a12(n3a29 − n4a28)
+ n2(a20a28 − n3a30),

r5 = a9a15 − a7a17,

r6 = a9(a15a30 + n4) − a7(a17a30 − a20a27) − n2a17
− a12a15a27,

r7 = a9(n4a30 − a20a29) + a12(a17a29 − n4a27)
− n2(a17a30 − a20a27),

r8 = a9a13 − a5a17,

r9 = a9(a13a30 + n3) − n1a17 − a5(a17a30 − a20a27)
− a12a10a27,

r10 = a9(n3a30 − a20a28) − n1(a30a17 − a27a20)
+ a12 (a17a28 − n3a27) ,

r11 = a27(a5a12 + a7a13),

r12 = a9(a13a29 − a15a28) + a5(n4a27 − a17a29)
+ a27(n1a15 + g3a13) − a7(a17a28 − n3a27),

r13 = a9(n3a29 − n4a28) − n1(a17a29 − n4a27)
− n2(a17a28 − n3a27),

B1 = (r2 + a2r5 − a3r8 − a4r11)/r1,

B2 =
(︁
a1r1s2 + a2r6 − a3r9 − a4r12 + r3

)︁
/r1,

B3 =
(︁
a1r3s2 + a2r7 − a3r10 − a4r13 + r4

)︁
/r1,

B4 =
(︁
a1r3s2

)︁
/r1, B5 =

(︁
a1r4s2

)︁
/r1,

G1 = Q1a1s2 (g2a20 − g4a12) ,

G2 = Q1a1s2 (g1a20 − g3a12) ,

G3 = Q1a1s2 (g1g4 − g2g3)

Appendix 2

g1i = −
{︁
r5λ6i + r6λ4i + r7λ

2
i

}︁
/
{︁
r1λ6i + r2λ4i + r3λ

2
i + r4

}︁
,

g2i =
{︁
r8λ6i + r9λ4i + r10λ

2
i

}︁
/
{︁
r1λ6i + r2λ4i + r3λ

2
i + r4

}︁
,

g3i = −
{︁
r11λ6i + r12λ4i + r13λ

2
i

}︁
/
{︁
r1λ6i + r2λ4i + r3λ

2
i + r4

}︁
;

i = 1, 2, 3, . . . , 5

Hj = Gjr1/a1r4s2; j = 1, 2, 3.
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